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INTRODUCTION

Domain decomposition techniques have become a popular way to numerically
solve partial differential equations, especially when geometric complexity
needs to be addressed [1,2]. The introduction of parallel computers seems
naturally suited for these techniques because each separate domain can be
assigned to its own processor. These techniques are especially appropriate
for use with pseudospectral methods due to both the global nature of the spec-
tral derivative matrices and the high condition number of these matrices as
the number of collocation points increases.

However, the interconnection of the individual domains, and the method of
solution of the overall numerical problem have not yet taken advantage of the
parallelism inherent in multi-domain techniques [3]. In the present work, we
investigate interface boundary conditions and show that a judicious choice of
these conditions leads naturally to an algorithm which has a high degree of
concurrency, even when pseudospectral methods are applied to each of the sub-
domains.

Several methods will be presented for a model elliptic problem. Each of
these relies upon the properties of spectral methods for its applicabiiity to
domain decomposition techniques. For a simple two domain problem, a novel
concurrent forward/backward elimination procedure 1s used. In order to
generalize this result to three or more domains, a different interface
boundary condition, that makes use of the special properties of spectral
methods, 1is introduced. These procedures are also discussed in relation to

influence matrix techniques.



SECTION 1
Certain features of pseudospectral methods, relevant to the issue of

parallel computing, can be identified by considering the pseudospectral

legendre (PSL) discretization of the simple equation

u = f(x) -1 < x<1 (1.1)
XX = 7=
with the boundary conditions
a u(~1) + Bu (-1) = b
X 1
(1.2)
y u(l) + Bux(l) = b,.
Let Xy 3 = 0,e¢¢,N be defined as follows
Xy = -1, Xy = +1, and Xy j = 1,00¢ N-1 are the extrema of Py i.e.,
PN(xj) =0 (1.2)
where Py is the Nth order Legendre polynomial.

In the PSL discretization, one seeks a polynomial Uy, of degree N, such that

9 u

= f(x) at x =%, j =1,e¢e¢ N-1 (a)
ax J

auN
a uN(-l) + B e (-1) = b1 (b) (1.3)



du

N
Y uN(l) + 8 Free (1) =» (c)‘

2.

In practice we express (1.3) as a linear system of equations for the grid
point values uN(xj). In fact uy(x), as an Nth order polynomial, is

identical with its Nth order interpolation polynomial, thus
N
u(x) = kZo ug(x, ) g, (%) (1.4)

where gk(x) are the Lagrange interpolation polynomials

(1-x" )P4 (%) .

g (%) = = = " P (X ON(NH) (1.5)
such that gk(x3) = sjk'
Substituting (1.4) into (1.3) one gets
g (a)
gy (x du (x ) = f(x,) j=1,e0¢,N-1 a
o Bk TN K 1
N
I {as,  + Be (x)Iuy(x) = b (b) (1.6)
k=0
N
k?__o (Y8 + 8g (x ) up(x) = b,. ()

The system of linear equations (1.6) is the PSL discretization of (1.1)(1.2).
It should be noted that all other pseudospectral methods can be expressed

in the same way, the only difference being the definition of the collocation

points and consequently the Lagrange interpolant gk(x). For example, in the

pseudospectral Chebyshev method, Xy are the extrema of



TN(x) = cos(Ncos—lx) and g, (x) 1is given by

T (x)
g () = (1 - ) N .4 (1.5a)

X_xk N2c

k

Cp = ¢y =@ cj =1 0# 3j#N.

For the PSL method it has been shown [4] that

P (x,)
paps _ N j 1 .
g7 (x,) = =2 j = 1,00¢,N-1
b PN (%, -x,)? 2k
j ok (1.7)
- -1 N
gk (xk) = 3 - 5 .
*x

Thus the first important feature of pseudospectral methods follows the obser-
vation that the system in (1.6) is full. This is true for all spectral
methods; the fact that (1.4) 1is a global interpolation results in full
matrices approximating derivatives. This is in contrast to local methods like
finite differences in which the matrices are banded.

The other important feature of pseudospectral methods is a consequence of
the fact that the collocation points xy are the nodes of the Gauss-Lobatto
guadrature formula. It is known that the Gauss-Lobatto quadrature formula is
exact for every polynomial h(x) of degree at most 2N-1. Thus there exists

positive weights Wttt s Wy such that

0’

1

N
[ h(x)dx = ] h(xj)wj, (1.8)
-1 =0

i.e., the spectral sum is exactly the integral.



In particular if fy 1is the interpolant of f at the points Xy

1 N
[ fy(0dx = ] f(x)w,. (1.9)
-1

=0 37
The significance of the above mentioned properties of spectral methods is one
of the main themes of this work. The fact that pseudospectral discretizations
result in full matrices creates enormous difficulties in the application of
spectral methods. We will attempt to show that one can use (1.8) in order to
modify this difficulty, in certain circumstances, with the use of parallel

architecture.

SECTION II

Multidomain spectral techniques have been extensively used by practi-
tioners since the beginning of this decade. 1In many applications these meth—-
ods were proved to be superior to one domain spectral techniques allowing more
flexibility in the geometry of the problem as well as easier inversion of the
matrices appearing in spectral methods.

We refer the reader to the review article [1] for a detailed discussion
on the merits of multidomain spectral techniques. Here we would 1like to
analyze these methods from the point of view of parallel computing; the cri-
terion that we suggest is whether a multidomain technique can be cast as a set
of disjoint problems, such that each problem can be solved in a different
processor concurrently,

We start by analyzing a variety of two domain PSL methods applied to

equation (1.3). The domain [-1,1] is being divided into two domains [-1,0]



and [0,1] so that we have to discretize a system of two equations

BZuI I
5 = f(x) -1 {x<£0 (a)
9x
(2.1)
2 11
A C I RE TS (b)
9x
with the boundary conditions
I
I du _
au”(-1) + B 5— (1) = b; (a)
(2.2)
I1
II du .
Yu (1) + 6 % (1) = b2. (b)

The PSL method is now applied separately to (2.1la), (2.2a), (2.1b), and
(2.2b). It is clear however that two more conditions should be given in order
fo make (2.1) and (2.2) consistent with (1.3). The first condition is the

same for all multidomain techniques, this is the continuity condition
ut(0) = u'1(0). (2.3)

It is the choice of the second condition that distinguishes between the multi-
tude of multidomain techniques. The simplest possibility is to impose the

condition for the continuity of derivatives at the point x =0

bu’ (0) = aut (0) 2.4
X T Tox ¢ (2.4)

It is interesting to note that for B=6=0 in (2.2) one can diagonalize



the system (2.1) with the conditions (2.2), (2.3), (2.4) and thus present
(2.1) as a system of two equations that are completely decoupled. 1In fact

upon defining

uI(x) + uII

2

R(X) = (—X)

and

uI(x) - uII(-x)

S(x) = 5

one gets the following system

?-2—‘23 = 2 [0 + £ 0]
ax -1 <{x<0 (a) (2.5)
-zix§=§ (£ (x) - £ (=%
R<-1>=;[;+$%1 Rw=o
(b)
S(-1) =12[7:-1--?] $(0) = o.

This is in fact the same way that was used in [5] to show that the eigenvalues
of the two-domain second derivative matrices are real negative and distinct.
We believe that the ability to diagonalize the system of equations resulting
from a particular multidomain technique is an indicator for parallelizing the
solution of the equations resulting from the discretization of the original
system. A more detailed discussion of this connection will be presented in a
future paper.

We turn now to the PSL method for the discretization of (2.1)-(2.4). Ilet

the collocation points for the first domain x§, j = 1,00 N-1 be defined



by
oP
N I
F(ij'i'l)-—o (a)
I 11
note that -1 S_les 0, and let xj be defined by
dp
N 11
T (2xj 1) =0 (b)
xé = -1, x; = 0, xél = 0, and x;I = 1. We assume here for simplicity that

the number of points at each domain is the same but of course this is not

essential.

Denote by (ué,---,ug) the values of u§ at the collocation
points x} and denote by (uél,--',uél) the values of uﬁl. Equation
(2.3) means that

I_ II
T %o
and we denote this by w.
Equation (2.4) leads to
P SO S - 1T, 11

Applying now the method described in (1.6) to discretize (2.1) and using (2.2)
we conclude the PSL discretization for the two domain method can be described

as follows



by
1
1
u
0 fl
0 : .
Ay P I .1
T uN"l fN_l
T =
hoy a hy3 v 0
s (11 (2.7)
A ' 1
0 By Ay . i
11
u II
N b2
where Ajj, Agyp are NxN

a scalar [6].

As an example, we write

element

matrices, hij are N-component vectors and a is

For convenience we define

uII bl fII
II. I II.
: P F: F fFo:
11 : b
fN—l 2
down the case N = 4, The x denotes a nonzero
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IT
u

II
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4

b |
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(2.8)

From the structure (2.7) and (2.8), it can be seen how the solution of (2.7)

can be carried out in two processors in parallel.

use the Gaussian elimination for the

0ol

matrix

N o

In the first processor we
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is being transformed to a lower triangular form in the second processor. The

system (2.8) is thus being transformed to the form

U h12 0 uI f

0 b 0 w = ¢ . (2.9)
~ II ~11

0 h32 L \ u f

U 4is an upper triangular NxN matrix and L 1is lower triangular NxN
matrix. The value of w 1s first determined and backward/forward substitu-
tion is then carried out, again concurrently within the two processors.

The procedure described above is strongly related to the fact that the
system (2.1)-(2.4) can be diagonalized, however it is more general since even
if (2.1)-(2.4) cannot be diagonalized the parallel inversion of (2.8) can
still be carried out. For example if 8 or § are different from zero
in (2.2) or if (2.1) is of the form (a(x)uy), = f, diagonalization is
impossible but the form (2.7) is still the same and the parallel solution of
(2.8) is the same.

A different approach to the solution of (2.7) is to rewrite the system

explicitly
I el
Allu + h12w = f (a)
11 _ LIl
A22u + h32w = f (b) (2.10)
T I T I _
h21 e u + aw + h23u = 0, (¢)
Thus
ol = a7l -y a7y (a)

11 11712



12—
I _ ,-1.11 _ -1
ot T = al et - w ahh (b) (2.11)
T ,-1.1, .T ,-1II
L T b VRl F ' (o)
— T T T -1

218411112 ~ Py3hgohs,

The system (2.11) seems to be, at first glance, more complicated than it

really is. 1In fact, let pj, P2s P3, P4 be N-component vectors such that

A11P2 = h12 (b)
(2.12)
AgP4 = h3j- (d)
Then equation (2.11) can be written as
T T
oo MaP1 Y PaaTs
) T T
8 = hy1Py = hyyPy (2.13
I
u = p, - wp,
11
U = py T Wp,.

It 1is self evident now that a part of the solution procedure can be carried

out in parallel. The vectors Pys°**sP, can be computed in parallel in four

T T T
(or two) different processors. The inner products h21p1, h23p3, h21p2,

e - e
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and h§1p3 can be again done in parallel. Equation (2.13) is basically
gathering information from the processors to the shared memory. It seems that
the procedure outlined in (2.9) is more efficient than (2.12)-(2.13); however
(2.12)-(2.13) can be easily generalized to more than two domains.

The procedure outlined in (2.12)-(2.13) has a very interesting interpre-
tation on the differential equation level. In fact equation (2.12a) is a dis-

cretized version of the equation

32q1
5 = f -1 <x<0 (2.14)
. = 22
X
with
Sql
a ql(—'l) + B 3% (-1) = bl ql(O) = 0

whereas (2.12b) is the PSL discretization of

2
] q,
=0 -1 <{x<0
7 2 X3
Ix
(2.15)
8q2
a qz(fl) + B T (-1) =0 q2(0) = -1,
Similarily (2.12¢) and (2.12d) are the discretization of

32q

3

7 = f
9x

(2.16)
3q3
q3(0) = 0 Yq3(1) + 53;(— 1) = b2
and

82q

4

7 =0
ox

(2.17)
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an
q4(0) = -1 an(l) + 6 T (1) = 0.

It is well-known that the general solution to (2.1la) and (2.2a) is

uI(x) = q; ~ Wa,. (2.18)

The continuity condition

a1 0) = utt(0)

implies that

uII(x) = qq - wq, (2.19)

and (2.13a) 1is the manifestation of the condition (2.4).

The advantage of the formulation (2.14)-(2.19) 1is that it lends itself

easily to generalization without getting into the details of the discretiza-

tion.

3.

We conclude by summarizing the main results in this section:

We showed that for Dirichlet boundary conditions, the system (2.1) and
(2.2) can be diagonalized and argued that each one of the equations can be

solved in a different processor.,

We presented a general technique to solve concurrently the system (2.7) by

assigning each separate domain to a separate processor [e.g., (2.9)].

We presented a different procedure (related to the influence matrix
method) and gave an interpretation on the 1level of the differential

equations.
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In Section IV, we will discuss methods 2 and 3 in the general case of more
than two domains. In the next section, we generalize method 1 to a two dimen-

sional equation.

SECTION III
The extension of the techniques mentioned in Section II to the two dimen-
sional Poisson equation seems to be obvious. However, there are some dif-
ferences in implementation. The two dimensional extension of (l.1) is the the
ti
equation 1<x<1

+ uyy = f(x,y) . (3.1)

uXX
-1 <y<1

Here we will discuss only Dirichlet boundary conditions of the form

u(x,-1) = b, (x) u(-1,y) = by(y)
(3.2)
u(x,1) = bz(x) u(l,y) = b4(y)-
The original domain is divided now into four domains
91 ={-1<x<0, -1 {yX< 0} 92 ={0<x<1, -1 {y<0}
(3.3)
Q, = {-1 <{x <0, 0y 1} Q ={0<x<1,0<y<1}.
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It is readily verified that (3.1)(3.2) can be factored into four independent
problems if one imposes continuity of the function and normal derivative at
interfaces.

T . IT _III IV

In fact denote by u-, u ", u ", u the solution u(x,y) in

Q1,92,93,94. The interface conditions amount to

a0,y = off0,y) -1 <y <o W0,y = w0,y 0<y <l
(3.5)
BuI SuII auIV auIV
3y (0,y) = 3y (0,y) a3y (0,y) = 3y o,y
uI(x,O) = uIII(x,O) uII(x,O) = uIv(x,O)
-lix_(_O 0<x<1 . (3.6)
aul(x,0) _ 3u T (x,0) autl(x,0) _ 3u’ (x,0)
9x 9x 9x 9x

We define now

ITI

Rl(x)}') = uI(x’Y) + uII(—x’y) tu (x’-}') + uIV(_xs-Y)
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Rz(x,y) = uI(x,y) - uII(—x,y) + uIII(x,—y) - uIV(—x,y)
(3.7)

uI(x,y) + uII(-x,y) - uIII(x,-y) - uIV(—x,-y)

n

R3(x,y)
R,(69) = ul(x,y) = ' (x,y) = 0 () + u ()

The functions R;, Ry, Ry, R, satisfy trivially the Equation (3.1) in 2,

defined 'in (3.4). Moreover
R, (-L,y) = b, (y) + b4(y) + b3(-y) + b, (-y)

Rz(-l’y) = b3(Y) - b4(}') + b3(—}’) - b4(_Y)

(3.8)

Ry(=1,y) = by(y) + b,(y) - by(-y) = b,(-y)

+

R,(=1,y) = bay(y) = b,(¥) by(=y) + b,(-y).

In the same way we can express each Ri(x,-l) 1= 1,004 as combinations

of bl(ix) and bz(ix). Moreover, e.g., (3.5) yields

RZ(O’Y) = R4(09Y) =0

(3.9)

3R1 3R3
Iy (0,y) TR (0,y) =0

and, e.g., (3.6) yields
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R3(x,0) = RA(X,O) =0

(3.10)

Thus, R;(x,y), Ro(x,y), R3(x,y), R4(x,y) can be solved concurrently.

To get back uI,---,uII one concludes from (3.7)
I 1
u (x,y) =7 (R (x,y) + Ry(x,y) + Ry(x,y) + R, (x,y)}

-1<y<0

uII(x’Y) = '}T {Rl (—X’Y) - Rz(-x9Y) + R3("X,Y) - Ra(—x,y)}

uIH(x,y) = % (R, (x,-y) + R, (x,-y) = Ry(x,7y) - R, (x,-y)}

[
(FaS
»®
I
s

o,y = 3 (R x,5y) = Ry(x,y) = Ry(-x,79) + R, (-x,)) :
0<y<1
Equation (3.7) shows a way to fully parallelize the solution of (3.1) using
four different processors. This is an extension of (2.5) which we adopted as
an indicator for possible parallelism. Investigations into the choice of
interface conditions leading to multidomain techniques that can easily be

parallelized will be reported in a future paper.
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SECTION IV
We return to Equation (l1.1) to discuss multidomain techniques with more

than two domains. We will discuss also a modification of (l.1) in the form

(h(u,ux))x = f(x) -1 <{x<1 (4.1)

Actually this 1is the form that appears most often in applications.

Nothing essential 1Is lost 1f we restrict ourselves to three domains and
for simplicity we will discuss this case only. Generalization to more domains
are trivial.

We start by showing that our indicator for parallelism shows that impos-
ing continuity of u and wu, as an interface condition for (l.1) (or con-

tinuity of u and h(u,ux) in the case of (4.1)) leads to a method that can-

not be factorized into disjoint problems. Let ul, oII, oIII be the

solutions of

uxx = f —1.5 x_s El

1T _ 11

U T f 51 < x 5_52 (4.2)
111 _ 111

U, = f €2~$ x<1

with ul(-1) = b, utI(1) = by and the interface condition
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ulg)) = o't e, = o' tiee,)
1 11 11 111
du _ du du _ du
w G = o G % (5) = (8-

As in (2.5) we map

[-1,6,1 » [6,,6,] and [£,,1] » [£,,E,]

and denote the new dependent variables GI, GII, GIII. We have now

;I - zl
XX
| ~TT 11
3 ~IIT _ 7111
XX
with
~T _ ~TT1 -
~T ~TT ~T1 _ III
~ ~ 11 I1T1
BE(E,)  du(E)  duiT(E)  dull(E,)
| _ 1 2 - 2
9x - 9x 9x 9x *

~ We seek now a combination of the form

R = AaT + Bolll 4 ogII

(4.3)

(4.4)

(4.5)

(4.6)
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that will satisfy the differential equation at El £xX< 52 with boundary

conditions that are independent of GI, GII, SIII. In fact we need three
different values of A, B, C to decouple the problem completely. However, it

is easily verified that there is only one quantity that is decoupled. Namely

(4.7)

is the only quantity that can be computed separately from the other two.
This conclusion becomes more apparent when we observe the structure of

the PSL method for three domains. In analogy to (2.7) we get the system

- -
A h
11 12 -1 - -
u ‘T f
hT a hT a
21 1 23 4 . 0
1
h A h =
11
31 22 32 o2 38 I
T T
LS - SLY Yy 0
111 111
i S ) I _*

where Aj; are NxN matrices hij are N component vectors and ay are

scalars. The unknowns are

uI - (uI vee uI ) “II D S S II) uIII = ( )85 S III)
0’ 1] N_l ’ ul 9 ’u‘N ? ul Hd !uN
w1 stands for ué = uél and wj stands for u§£1 = uéII.

We write down explicitly the case N = 3, the X denotes nonzero

elements



r—
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Tl T .
U, F—bl
I I
ul fl
I I
u2 f2
w1 0
b 1I
X X X| X 0 0 0 0 0 0 O JI £
X X x| xf o o o 0 0 0 O 1
X x x| xf o0 0 0 0 0 O I (11
X X X X X_X_ X XI 0o 0 o0 u, _ 2 (4.9)
0 0 0 [X] X X X| Xt o o0 o0 -
o o o (xl Ix x x/[x{ o o o II gLl
0 0 0 X X x| 1xl o 0o o 3 3
o o o [Xx [x_x_ x [x] [x ¥ X
0 0 0 0 0 0 0 X X ¥ X W, 0
0O 0 0 0 0 0 0 (X [x X X (111
o 0 0 0 0 0 0 X |x X X I1I 1
_ uy
111
JIT 2
2 b,
IIT
| u3 ] L _

It is clear from (4.5) that we can carry out Gaussian elimination in parallel
only for two blocks, the first is (2N+2)x(2N+2) and the second
(N+1 )x (N+1), so at this point nothing has been gained from using three
domains. This corresponds to the observation that there is only one quantity
that is independent of the others. It seems that the method outlined in (2.9)
does not carry over to more than two domains. We will show later that a
judicious choice of the interface boundary condition can lead to a separable
set of equations.

The method outlined in (2.10)-(2.12) is still valid. We first define
pl pII pIIT

Py1s Pogs P39, P3p to be the solution vectors of

?
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1. _
AP = f APy =By
T II _ -
Ay = f AyoPy1 = gy Ay9P99
111 .ITI }
AP = f AyqPqy = B

It is readily verified that if w;, wy are the solution of the system

wylay = hy Py = h3uPy ]+ wyla, - hysPp,l =
wylay - h£1P21] +w,la, - hy1Ppp - hygPs; ]
then
uI = PI - wlP12
Heptt - ¥1P21 T ¥aPay
WL pIIT g

32

T I

-h,,P

21

T _II

= -h, P

41

(a)

(b)

(c)

I
= hasP

T III
= by P

(4.10)

(4.11)

(4.12)

The procedure (4.10)-(4.12) shows that one has to solve three equationé per

inner domain, c¢.f. (4.10b), and two equations per boundary domain;

this can be done in parallel.

Equation (4.11) has then to be solved.

dimension of this system is proportional to the number of domains.

The method described in (4.10)-(4.12) has,

the differential equation level. The vec

tors

again,

pl pII

pIII

(4.10a,c)

The

an interpretation on

are the approx—

imations to the Equation (1l.1) (or (4.17) with homogeneous boundary conditions
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in each domain). The vectors Pij are the approximations to the solutions of
the homogeneous problem with homogeneous boundary conditions at one side and
value -1 at the other side. Equation (4.11) expresses the interface condi-
tions.

We claim now that by a better choice of the interface condition one can
greatly simplify the solution procedure. In fact integrating (4.1) from -1

to 61 one gets

3
1
h(u,ux)(x = gl) - h(u,ux)(x = -1) = {1 fdx. (4.13)
Therefore,
&1
h(u,ux)(x = gl) = b + {1 fdx. (4.14)

We note the exact result, that within the context of the PSL method

3 N
{ (PNf)dx = jz f(xj)wj

and therefore the integral is known explicitly. We therefore replace (4.2)

and (4.3) by

h(ul,ul) = £F -1 < x<E
x'x - 7=
IT II I1
h(u U )X f 51 {x S-EZ (4.15)
ITI IIX _ JIIIX
h(u U )X = f 52 £x<1

with interface conditions given as
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I1I

uhg) = (e u'tg,) = o',

(4.16)
I1I
u

b

uiII)x(x = 52) = b1+ Z fI(xj)w

II II,, _
h(u U Y(x = & f

I
1) = b1+ ) f (xj)wj h(

11
+ Z f (xj)wj.

When (4.15) and (4.16) are used, we get basically the system described in

T
hyy

With this notation we note first that the system (4.11) is bidiagonal.

T
(4.8) with = 0, ay = 0, and hyy = 0.

Alternatively, one can transform Ajy and A9y 4 an upper diagonal form and

the lower corner structure in (4.8), i.e.,

to a lower diagonal form and then solve for wo9 and w;. Backward substitu-
tion will then be done concurrently.

We conclude this section by emphasizing that interface boundary condi-
tions have a great impact on the ability to carry out the solution procedure

in parallel.
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